网站综合信息 blog.renzuocheng.com
    • 标题:
    • Zenith | Zuocheng Ren's Blog 
    • 关键字:
    •  
    • 描述:
    •  
    • 域名信息
    • 域名年龄:14年28天  注册日期:2010年12月10日  到期时间:2015年12月10日
      注册商:GODADDY.COM, LLC 
    • 服务器空间
    • IP:该域名无法解析为IP
      地址:
    • 备案信息
    • 备案号: 
    网站收录SEO数据
    • 搜索引擎
    • 收录量
    • 反向链接
    • 其他
    • 百度
    • 0  
    • 0  
    • 快照:无首页快照  
    • Google
    • 97  
    • 0  
    • pr:4  
    • 雅虎
    • 0  
    •  
    •  
    • 搜搜
    • 0  
    •  
    •  
    • 搜狗
    • 0  
    •  
    • 评级:1/10  
    • 360搜索
    • 0  
    •  
    •  
    域名流量Alexa排名
    •  
    • 一周平均
    • 一个月平均
    • 三个月平均
    • Alexa全球排名
    • 22,740,885  
    • 平均日IP
    • 日总PV
    • 人均PV(PV/IP比例)
    • 反向链接
    • dmoz目录收录
    • -  
    • 流量走势图
    域名注册Whois信息

    renzuocheng.com

    域名年龄: 14年28天
    注册时间: 2010-12-10
    到期时间: 2015-12-10
    注 册 商: GODADDY.COM, LLC

    获取时间: 2015年11月22日 10:25:01
    Domain Name: RENZUOCHENG.COM
    Registrar: GODADDY.COM, LLC
    Sponsoring Registrar IANA ID: 146
    Whois Server: whois.godaddy.com
    Referral URL: http://registrar.godaddy.com
    Name Server: NS01.DOMAINCONTROL.COM
    Name Server: NS02.DOMAINCONTROL.COM
    Status: clientDeleteProhibited http://www.icann.org/epp#clientDeleteProhibited
    Status: clientRenewProhibited http://www.icann.org/epp#clientRenewProhibited
    Status: clientTransferProhibited http://www.icann.org/epp#clientTransferProhibited
    Status: clientUpdateProhibited http://www.icann.org/epp#clientUpdateProhibited
    Updated Date: 2012-11-24
    Creation Date: 2010-12-10
    Expiration Date: 2015-12-10

    >>> Last update of whois database: Sun, 2015-Nov-22 02:24:57 GMT <<<

    For more information on Whois status codes, please visit
    https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en.

    Domain Name: RENZUOCHENG.COM
    Registrar URL: http://www.godaddy.com
    Registrant Name: Ren Zuocheng
    Registrant Organization:
    Name Server: NS01.DOMAINCONTROL.COM
    Name Server: NS02.DOMAINCONTROL.COM
    DNSSEC: unsigned

    For complete domain details go to:
    http://who.godaddy.com/whoischeck.aspx?domain=RENZUOCHENG.COM
    同IP网站(同服务器)

    该域名无法解析为IP

    其他后缀域名
    • 顶级域名
    • 相关信息
    网站首页快照(纯文字版)
    抓取时间:2019年07月31日 17:59:34
    网址:http://blog.renzuocheng.com/
    标题:Zenith | Zuocheng Ren's Blog
    关键字:
    描述:
    主体:
    ZenithSearchPrimary MenuSkip to contentSearch for:Computer ScienceWolframAlpha cannot calculate A*inv(A) correctly.November 20, 2012 Awaken2 CommentsCalculating A*inv(A) results in clearly the identity matrix. However, WolframAlpha cannot get this right.This is what I got from them:A*inv(A)The result can be previewed here:Obviously, WolframAlpha should try harder to make sure their result is correct before they put ADs on their page. They might be interested in Pepper and Ginger, or the more general area of Verifiable computation.Update: Their customer service team replies super fast. I guess it’ll be fixed soon.Verifiable computationWolframAlphaComputer ScienceGenerate cyclic group of prime order and one of its generatorNovember 17, 2012 Awaken12 CommentsIn cryptography, the follow sentence appears very common: “Let G be cyclic group of Prime order q and with a generator g.” This is the first step in many encryption/signature scheme such as ElGamal encryption.But how is this accomplished exactly? It turns out that this problem is not that trivial. Some research finds the following commonly used method.Zp*={1,2,…,p-1} is known to be a cyclic group of order p-1 if p is a prime number. When p=2q+1 where q is also a prime number, p is said to be a safe prime number. q is very interesting here because p-1=2q means that any subgroup of Zp* can only have order 2 or order q.. Moreover, they are all cyclic groups. Let’s call the subgroup of order q Gq. This is the group we are interested in (cyclic group of prime order q).Now we need to find one of its generator. If we find an element of order q in Zp*, is it a generator of Gq? The answer is yes. For any element, the order of the element can only be 2,q or p-1. If an element g is of order q, it follows from definition of cyclic group that Gq=. Actually, any element other than the identity in Gq is a generator.Now we have sketched the outline of an algorithm to generate a cyclic group Gq of prime order q with generator g.1. Generate random prime q until p=2q+1 is also a prime.2. Randomly generate an integer 2Golang, you can easily port the code into other programming language if you are interested.package mainimport ("crypto/rand""math/big")func gen(n int) (*big.Int, *big.Int, *big.Int) {for {q, err := rand.Prime(rand.Reader, n - 1)if err != nil {panic(err.Error())}n := new(big.Int).Mul(q, big.NewInt(2))p := new(big.Int).Add(n, big.NewInt(1))// p = 2q + 1, order(p)=n=2qif p.ProbablyPrime(40) {for {a, err := rand.Int(rand.Reader, p)if err != nil {panic(err.Error())}                                                                         if b := new(big.Int).Exp(a, big.NewInt(2), p); b.Cmp(big.NewInt(1)) == 0 {continue}if b := new(big.Int).Exp(a, q, p); b.Cmp(big.NewInt(1)) == 0 {return p, q, a}}}}return nil, nil, nil}func main() {p, q, g := gen(1024)fmt.Println(p)fmt.Println(q)fmt.Println(g)}Running the above code can generate p,q,g of 1024 bits. Note that if there is 

    © 2010 - 2020 网站综合信息查询 同IP网站查询 相关类似网站查询 网站备案查询网站地图 最新查询 最近更新 优秀网站 热门网站 全部网站 同IP查询 备案查询

    2025-01-03 02:24, Process in 0.0041 second.